| Course<br>Type | Course<br>Code | Name of Course                              | L | Т | P | Credit |
|----------------|----------------|---------------------------------------------|---|---|---|--------|
| DE             | NECD517        | Advanced Microwave Measurement & Instrument | 3 | 0 | 0 | 3      |

## **Course Objective**

Provide the student with experience in measurements of RF and microwave hardware and signals using modern equipment.

## **Learning Outcomes**

At the end of this module, students are expected to be able to

- Handle high-end instruments like VNA, Spectrum analyzer, power meter, etc.
- Characterize different passive and active microwave devices.
- Able to setup experiments for real-time situations.

| Unit<br>No. | Topics to be Covered                                                                                                                                                                                                                                                 | Lecture<br>Hours | Learning Outcome                                                                                                |  |  |
|-------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------|-----------------------------------------------------------------------------------------------------------------|--|--|
| 1           | Fundamentals of electromagnetics and microwave engineering, basic instruments for microwave measurements, and Introduction to RF and Microwave Measurements, Overview of State-of-the-Art Microwave Measurements, S-Parameters and Related Black-Box Representation. | 8                | Understanding of fundamental of microwave engineering and basic tools for the analysis of any microwave network |  |  |
| 2           | Time Domain Reflectometry (TDR): measurement characteristics of various connector families, transmission lines, complex loads.                                                                                                                                       |                  | Students will be learning the basic construction and analysis of TDR.                                           |  |  |
| 3           | Spectrum Analyzer: for measurement of simple signals on a spectrum analyzer to understand resolution bandwidth, video bandwidth, dynamic range, noise, etc,                                                                                                          | 7                | Will learn spectrum analyze architecture and applications.                                                      |  |  |
| 4           | Spectrum analyzer architecture, network analyzer architecture, error correction model, Material Property Measurement Using the VNA, a scalar network analyzer.                                                                                                       | 6                | Students will learn VNA basics and error correction model with connection o calibration of the same.            |  |  |
| 5           | Power meter, LCR meter, Noise figure measurement, Noise Measurements Definition, Noise Measurement Basics, special Consideration for Mixers, Phase Noise, Phase-Noise Measurement Techniques signal generator architecture and measurements.                         | 8                | The student will familiarize the different advanced instruments and handling like LCR meter, noise meter, etc.  |  |  |
| 6           | Amplifier characterization, mixer characterization, design and build a simple single stub transmission line matching circuit etc.                                                                                                                                    | 6                | Students will learn how characterize amplifier.                                                                 |  |  |
| -           | Total                                                                                                                                                                                                                                                                | 42               | 4, 7                                                                                                            |  |  |

## Text Book:

 Atef Z. Elsherbeni and VeyselDemir, 'The Finite-Difference Time-Domain Method for Electromagnetics with MATLAB Simulations' SciTech Publishing, Inc Raleigh, NC, 2<sup>nd</sup> edition, 2015.

## Reference Books:

- Matthew N.O. Sadiku, 'Numerical Techniques in Electromagnetics, 3rd Edition, 2009, Prairie View A&M University, Texas, USA
- 2. Journal Papers of IEEE Transaction on Antenna and Propagation and IEEE Transaction on Microwave Theory and Techniques.